bitfield

bitfield

] COLLABORATORS
TITLE
bitfield
ACTION NAME DATE SIGNATURE
WRITTEN BY December 18, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

bitfield

Contents

1 bitfield
1.1 bitfield.doc
1.2 bitfield.m/--overview--

1.3 bitfield.m/bit_operations e e e
1.4 bitfield.m/bitfield_combine
1.5 bitfield.m/bitfield_operations L e e
1.6 bitfield.m/end e
1.7 bitfield.m/field_operations e e e e e e e e

1.8 bitfield.m/field_range
1.9 bitfield.m/new
1.10 bitfield.m/range_errors

bitfield

Chapter 1

bitfield

1.1 Dbitfield.doc

——overview—-—
bit_operations ()
bitfield_combine ()
bitfield_operations ()
end ()
field_operations()
field_range ()

new ()

range_errors ()

1.2 Dbitfield.m/--overview--

PURPOSE
To provide a multi-purpose bitfield.

OVERVIEW

Bitfields are a simple way of encoding a set of true/false states
for a number of integer values. Rather than use a lookup table,
you can use a bitfield which holds 8 states per byte.

Basically, the bitfield is a collection of individual ’'bits’, each
of which is a simple boolean value, TRUE or FALSE.

You <can set, <clear, and test individual bit and ranges of bits
within the bitfield. You can ask the bitfield either to ignore or
raise exceptions 1if you step outside of it. You can also combine

bitfield

2/7

bitfields logically.

1.3 Dbitfield.m/bit_operations

bitfield.
bitfield.
bitfield.
bitfield.

SYNOPSIS
state :=

state
state
state

NAME
set () —— set an individual bit.
clear () -- clear an individual bit.
invert () —-- invert an individual bit.
test () —-—- test an individual bit.
set (bit)

clear (bit)
invert (bit)
test (bit)

FUNCTION
Will test, then perform an operation on an individual bit in the

bitfield:

set ()
clear ()
invert (
test ()

If the
a range

INPUTS
bit -

RESULT
state -

SEE ALSO

)

will set the bit to boolean TRUE.

will clear the bit to boolean FALSE.

will change a boolean FALSE bit to TRUE, and vice-versa.
will perform no altering operation on the bit.

bit specified is outwith the range stored by the bitfield,
error will occur.

the bit to perform an operation on.

the previous state of the bit before the operation was
performed on it, either TRUE or FALSE.

bitfield operations()

14

range_errors ()

1.4 Dbitfield.m/bitfield_combine

bitfield.
bitfield.
bitfield.
bitfield.

SYNOPSIS

NAME
copy () —— copy from another bitfield.
and() —-- mask bitfield with another.
or() —-- overlay from another bitfield.
xor () —— perform exclusive-or combine of bitfield.

bitfield.copy(bitfield?2)

bitfield 3/7

bitfield.and(bitfield2)
bitfield.or (bitfield2)
bitfield.xor (bitfield2)

FUNCTION
Will perform a logical operation on the bitfield using the data
held in another bitfield.

Currently, both Dbitfields must be exactly the same size as each
other, or a range error will occur.

bl.copy (b2) will perform Dbl := b2

bl.and(b2) will perform Dbl := bl AND b2
bl.or (b2) will perform Dbl := bl OR b2
bl.xor(b2) will perform Dbl := bl XOR b2

If the bitfield specified falls 1in any way outwith the range
stored by the bitfield, a range error will occur.

INPUTS
bitfield2 - pointer to another instance of the bitfield class.

RESULT
Always returns TRUE, except if a range error occurs, in which case
it will return FALSE.

SEE ALSO

range_errors ()

1.5 bitfield.m/bitfield_operations

NAME

bitfield.bf_set () —-—- set a range of bits.
bitfield.bf_clear() —-- clear a range of bits.
bitfield.bf_invert () —-- invert a range of bits.
bitfield.bf_test () —-—- test a range of bit.

SYNOPSIS
andstate, orstate := bf_set (leftbit, rightbit)
andstate, orstate := bf_clear (leftbit, rightbit)
andstate, orstate := bf_invert (leftbit, rightbit)
andstate, orstate := bf_test (leftbit, rightbit)

FUNCTION
Will test all of, then perform an operation on a range of bits in
the bitfield:

bf_set () will set all affected bits to boolean TRUE.

bf_clear() will clear all affected bits to boolean FALSE.
bf_invert () will change boolean FALSE bits to TRUE, and vice-versa.
bf_test () will perform no altering operation on the bits.

If the bitfield specified falls 1in any way outwith the range

bitfield 4/7

stored by the bitfield, a range error will occur.

INPUTS
leftbit, rightbit - the bits you want to affect, from leftbit to
rightbit (inclusive). 1left and right will be
swapped automatically if right < left.
RESULT
andstate - an AND-based combination of the states of all the
affected bits before any changes were made.
If ALL of the bits were TRUE, the andstate is TRUE
If any of the bits were FALSE, the andstate is FALSE.
orstate - an OR-based combination of the states of all the
affected bits before any changes were made.
If ANY of the bits were TRUE, the orstate is TRUE
If all of the bits were FALSE, the orstate is FALSE.
SEE ALSO

bit_operations ()

4
range_errors ()

1.6 Dbitfield.m/end

NAME
bitfield.end() —-—- Destructor.
SYNOPSIS
end ()
FUNCTION

Frees resources used by an instance of the bitfield class.
SEE ALSO

new ()

1.7 Dbitfield.m/field_operations

NAME
bitfield.setfield() —-- set all bits.
bitfield.clearfield() —- clear all bits.
bitfield.invert () -- invert all bits.

SYNOPSIS
setfield()

bitfield 517

clearfield()
invert ()

FUNCTION

setfield() sets all bits in the bitfield to boolean TRUE.
clearfield() clears all bits in the bitfield to boolean FALSE.
invert () switches all bits to their opposite boolean value.

These functions are more optimised than using the ranged bitfield
operations over the entire range.

SEE ALSO

bitfield_operations|()

1.8 bitfield.m/field_range

NAME
bitfield.range() —-- report range of representable integers.
SYNOPSIS
min, max := range()
FUNCTION

Returns the minimum and maximum represented integers in this
instance, as defined in the construction.

RESULT
min - the minimum representable integer in this bitfield.
max - the maximum representable integer in this bitfield.

SEE ALSO

new ()

1.9 Dbitfield.m/new

NAME
bitfield.new() —-- Constructor.

SYNOPSIS
new (min, max)
new (min, max, range)

FUNCTION

Initialises an instance of the bitfield class. Raises exception
"MEM" if it cannot allocate enough memory for the required number
of bits. All bits are initially cleared.

INPUT

bitfield

6/7

min - the minimum integer value that will be represented in the
field. This can be negative.

max - the maximum integer value that will be represented in the
field. This <can also be negative, and can also be less
than min (the values will be swapped if they are).

range - whether range errors are fatal or not. See

range_errors ()
The default for this argument is FALSE.
SEE ALSO

end ()
, range(),
range_errors ()

1.10 bitfield.m/range_errors

NAME

bitfield.range_errors() ——- define range error handling.

SYNOPSIS

oldstate := range_errors (newstate)

FUNCTION
Defines the handling of range errors with this instance of the
bitfield.
A range error occurs when you try an operation that cannot

logically perform its function with the parameters you have
specified. For example, trying to toggle a bit that is outside the

range of
not the

When a
of the

the bitfield, or trying to combine two bitfields that are
same size.

range error occurs, what happens next depends on the state
range_errors flag for the bitfield instance, as set in the

construction, or at runtime with this function.

If range_errors = FALSE, NO OPERATION WILL OCCUR, and the
operation will immediately return FALSE.

If range_errors = TRUE, NO OPERATION WILL OCCUR, and the operation
will throw the exception "rnge".

It is essential to realise that NO operation happens when there is

a range
ignored’

error. range_errors=FALSE does NOT mean that ’'errors are
. It means that ’'errors do not throw an exception’.

An analogy 1s that range_errors=TRUE makes errors ’'loud’ or

"fatal’.

INPUTS

bitfield

717

newstate - a TRUE or FALSE value to set the range_errors flag.

RESULT

oldstate - the previous value of range_errors flag.

SEE ALSO

new ()

, range(),

bitfield operations()
bit_operations ()

4

bitfield_combine ()

	bitfield
	bitfield.doc
	bitfield.m/--overview--
	bitfield.m/bit_operations
	bitfield.m/bitfield_combine
	bitfield.m/bitfield_operations
	bitfield.m/end
	bitfield.m/field_operations
	bitfield.m/field_range
	bitfield.m/new
	bitfield.m/range_errors

